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The aim of the present work is concerned with the solution of a problem on two-temperature gener-
alized thermoelasticity for a functional graded material. The governing equations of two-temperature
generalized thermoelasticity with one relaxation time for functionally graded materials (FGM) (i.e.,
material with spatially varying material properties) are established. Those equations are expressed
in Laplace transform domain. The analytical solution in the transform domain is obtained by using
the eigenvalue approach. Numerical results for the temperature distribution, displacement and ther-
mal stress represented graphically.
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1. INTRODUCTION
Functionally graded materials (FGMs) are composite
materials formed of two or more constituent phases with a
continuously variable composition. FGMs possess a num-
ber of advantages that make them attractive in potential
applications, including a potential reduction of in-plane
and transverse through-the-thickness stresses, an improved
residual stress distribution, enhanced thermal properties,
higher fracture toughness, and reduced stress intensity
factors.1

Functionally graded materials (FGMs) can be viewed
as an inhomogeneous materials with spatial form whose
properties are function on spatial coordinates. Due to the
continuous change of material properties in space, the
absence of interfaces between different constituents or
phases largely reduces the degree of material property mis-
match and brings appealing physical behaviors superior to
homogeneous and conventional materials. FGMs can be
applied to many engineering structures subjected to severe
thermal loadings such as high temperature and thermal
shocks to reduce thermal stresses and suffer less thermal
damage.2

Two models have been used to characterize the mate-
rial gradation. One is the so-called continuum model,
in which analytical functions such as exponent and

∗Author to whom correspondence should be addressed.

power-law functions are commonly used to describe the
continuously varying material properties. Although the
continuum model may not be physical in practice, this
model is convenient for conducting mathematical analysis.
The other is the micromechanics model, which takes into
account interactions between constituent phases and uses
a certain representative volume element (RVE) to estimate
the average local stress and strain fields of the composite,
after which the local average fields are used to evaluate the
effective material properties. The Mori-Tanaka method3

and the self-consistent method4 are two representatives of
these models. In this paper, attention is focused on the
continuum model only.
Mathematically, the thermoelastic analysis in FGMs is

described by partial differential equations with variable
coefficients, to which a closed-form analytical solution
is difficult to obtain and is available for limited prob-
lems with simple geometries, certain types of gradation of
material properties, specific types of boundary conditions
and special loading cases. So, numerical methods have
been developed for investigating static or dynamic prob-
lems mainly involving the evaluation of temperature field
and stress fields to reduce dependency on costly and time
consuming experimental analysis. Among the established
numerical methods, the finite element method (FEM)5–7

or the graded finite element method,8�9 the boundary ele-
ment method (BEM) or boundary integral equation method
(BIEM)10–12 are most versatile to deal with thermoelastic
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analysis. More recently, as alternatives to the FEM and
BEM, meshless methods have been used for thermal anal-
ysis of FGMs. The corresponding developments in ther-
mal and stress computation in FGMs include: Rao and
Rahman13 used element-free Galerkin method (EFGM) to
simulate stress fields near the crack tip in FGMs. The same
method was used by Dai et al.14 to study thermomechani-
cal behavior of FGM plates. Ching and Yen15�16 analyzed
the static and transient responses of FGMs under mechan-
ical and thermal loads by means of the meshless local
Petrov–Galerkin (MLPG) method.17�18 Moreover, Sladek
et al. solved dynamic anti-plane shear crack problem and
transient heat conduction in FGMs by a meshless local
boundary integral equation (LBIE) method.19�20

Chen and Gurtin,21 Chen et al.22�23 have formulated a
theory of heat conduction in deformable bodies, which
depends upon two distinct temperatures, the conductive
temperature � and the thermo-dynamical temperature T .
For time independent situations, the difference between
these two temperatures is proportional to the heat supply,
and in the absence of any heat supply, the two tempera-
tures are identical Chen and Gurtin.21 For time dependent
problems, however, and for wave propagation problems
in particular, the two temperatures are in general differ-
ent regardless of the presence of a heat supply. The two
temperatures T �� and the strain are found to have repre-
sentations in the form of a traveling wave plus a response,
which occurs instantaneously throughout the body,24 and
Warren and Chen25 investigated the wave propagation in
the two-temperature theory of thermoelasticity.
Youssef26 investigated two-temperature generalized ther-

moelasticity theory together with a general uniqueness the-
orem and solved many applications in the context of this
theory in Refs. [27–30]. During the last three decades,
a number of investigations31–59 have been carried out
using the aforesaid theories of generalized thermoelastic-
ity. Recently,60–62 variants problems in waves are studied.
Other forms are described for example in the Refs. [63–
65].
This work is concerned with the solution of a prob-

lem on two-temperature generalized thermoelasticity for
a functional graded material. The governing equations
of two-temperature generalized thermoelasticity with one
relaxation time for functionally graded materials (FGM)
will be established. Those equations will be expressed in
Laplace transform domain. The analytical solution in the
transform domain will be obtained by using the eigenvalue
approach. Numerical results for the temperature distribu-
tion, displacement and thermal stress will be represented
graphically.

2. BASIC EQUATION
Equation of motion

�ij� j = �
�2ui

�t2
(1)

Equation of heat conduction

�K��i��i =
(
�

�t
+ �

�2

�t2

)
��ceT +	T0e� (2)

and
�−T = a�ii� i = x� y� z (3)

The constitutive equations are given by

�ij = 2
eij + ��e−	 �T −T0�
 �ij (4)

and
e = eii� i = x� y� z (5)

where ��
 are the Lame’s constants; � is the density of
the medium; ce is the specific heat at constant strain; �t is
the coefficient of linear thermal expansion; t is the time;
� is the conductive temperature; a is non-negative con-
stant which is called two-temperature parameter; T is the
thermodynamic temperature change of a material particle;
T0 is the reference temperature; � is the relaxation time;
K is the thermal conductivity; �ij is the Kronecker sym-
bol; �ij are the components of stress tensor; ui are the
components of displacement vector.
Thus, we replace ��
�	�K and � by �0f �X�, 
0f �X�,

	0f �X�, K0f �X� and �0f �X� where �0, 
0, 	0, K0 and �0

are assumed to be constants and f �X� is a given dimen-
sionless function of the space variable X= �x� y� z�. Then
the Eqs. (1) to (3) take the following form:

f �X�
[
2
0eij + ��0e−	0 �T −T0�
 �ij

]
�j

+ f �X��j
[
2
0eij + ��0e−	0 �T −T0�
 �ij

]

= �0f �X�
�2ui

�t2
(6)

(
Kof �X���i

)
�i
=

(
�

�t
+ �

�2

�t2

)
��of �X�ceT +	of �X�T0e�

(7)
�ij = f �X�

[
2
oeij + ��oe−	o �T −T0�
 �ij

]
(8)

3. FORMULATION OF THE PROBLEM
Let us consider a functionally graded isotropic thermoelas-
tic body at a uniform reference temperature T0, occupying
the region x ≥ 0 where the x-axis is taken perpendicular
to the bounding plane of the half-space pointing inwards.
It assumed that the state of the medium depends only on
x and the time variable t, so that the displacement vector
�u and temperatures field T and � can be expressed in the
following form:

�u= �u�x� t��0�0�� T = T �x� t�� �= ��x� t� (9)

It is assumed that the material properties depend only on
the x-coordinate. So, we take f �X� as f �x�. In the con-
text of the generalized thermoelasticity theory based on
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the Lord and Shulman model, the equation of motion, heat
equation, and constitutive equation can be written as:

f �x�

[
��0+2
0�

�2u

�x2
−	0

�T

�x

]

+ �f �x�

�x

[
��0+2
0�

�u

�x
−	0T

]
= �0f �x�

�2u

�t2
(10)

K0

(
f �x�

�2�

�x2
+ �f �x�

�x

��

�x

)

= f �x�

(
�

�t
+ �

�2

�t2

)(
�0ceT +	0T0

�u

�x

)
(11)

�−T = a
�2�

�x2
(12)

and

�xx = f �x�

[
��o +2
o�

�u

�x
−	o �T −T0�

]
(13)

We define the following dimensionless quantities

�x′� u′�= c

�
�x�u�� T ′ = T −T0

T0
� �′ = �−T0

T0

�t′� � ′′�= c2

�
�t� �� � � ′

xx =
�xx

�0+2
0

� a′ = �2

c2
a

where c2 = �0+2
0/�0 and � = Ko/�oce.
Upon introducing in Eqs. (10)–(13), and after suppress-

ing the primes, we obtain

f �x�

[
�2u

�x2
−�

�T

�x

]
+ �f �x�

�x

[
�u

�x
−�T

]
=f �x�

�2u

�t2
(14)

f �x�
�2T

�x2
+ �f �x�

�x

�T

�x
=f �x�

(
�

�t
+�

�2

�t2

)(
T +�

�u

�x

)
(15)

�−T = a
�2�

�x2
(16)

�xx = f �x�

[
�u

�x
−�T

]
(17)

where � = T0	o/�o +2
o��= 	o/�oce.

4. EXPONENTIAL VARIATION OF
NON-HOMOGENEITY

We will consider
f �x�= enx (18)

where n is dimensionless constant.31

Then, Eqs. (14)–(17) will reduce to
[
�2u

�x2
−�

(
��

�x
−a

�3�

�x3

)]

+n

[
�u

�x
−�

(
�−a

�2�

�x2

)]
= �2u

�t2
(19)

(
�2�

�x2
+n

��

�x

)
=
(
�

�t
+ �

�2

�t2

)(
�−a

�2�

�x2
+�

�u

�x

)

(20)

�xx = enx
[
�u

�x
−�

(
�−a

�2�

�x2

)]
(21)

5. APPLICATION
We assume that the medium is initially at rest. The undis-
turbed state is maintained at reference temperature.
Then, we have

u �x�0�= �u �x�0�
�t

= 0� � �x�0�= �� �x�0�
�t

= 0 (22)

We consider the problem of a thick plate of finite high l.
Choosing the x-axis perpendicular to the surface of the
plate with the origin coinciding with the lower plate, the
region � under consideration becomes:

�=��x�y�x� � 0≤x≤ l�−�<y<��−�<z<�� (23)

The surface of the plate is taken to be traction free. The
lower plate is subjected to a thermal shock. The upper
plate is kept at zero temperature. Mathematically these can
be written

�xx �0� t�= 0 (24)

� �0� t�= �1H�t� (25)

�xx �l� t�= 0 (26)

and
� �l� t�= 0 (27)

where H�t� denotes the Heaviside unit step function.

6. GOVERNING EQUATIONS IN THE
LAPLACE TRANSFORM DOMAIN

Applying the Laplace transforms for Eqs. (19)–(21) and
(24)–(27) define by the formula

f̄ �s�= L�f �t�
=
∫ �

0
f �t�e−stdt (28)

Hence, we obtain the following system of differential
equations

[
d2ū

dx2
−�

(
d�̄

dx
−a

d3�̄

dx3

)]

+n

[
dū

dx
−�

(
�̄−a

d2�̄

dx2

)]
= s2u (29)

(
d2�̄

dx2
+n

d�̄

dx

)
= (

s+ �s2
)(

�−a
d2�̄

dx2
+�

dū

dx

)
(30)

�̄xx = enx
[
dū

dx
−�

(
�̄−a

d2�̄

dx2

)]
(31)

�̄xx �0� s�= 0 (32)
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�̄ �0� s�= �1

s
(33)

�̄xx �l� s�= 0 (34)

and
�̄ �l� s�= 0 (35)

Equations (29) and (30) can be written in a vector-matrix
differential equation as follows:66

d �V
dx

= A �V (36)

where

�V =
[
ū �̄

dū

dx

d�̄

dx

]T

(37)

A=

⎡
⎢⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1

a31 a32 a33 a34

0 a42 a43 a44

⎤
⎥⎥⎥⎥⎥⎦

(38)

and

a31 =
s2

a4

� a32 =
1

a4

�n�−�aa42a44−n�aa42�

a33 =− 1
a4

�n+�aa43a44+n�aa43�

a34 =
1
a4

(
�−a�

(
a42+a2

44

)−n�aa44

)

a42 =
s�1+ �s�

1+as�1+ �s�
� a43 =

�s�1+ �s�

1+as�1+ �s�

a44 =
−n

1+as�1+ �s�
� a4 = 1+aa43�

7. SOLUTION OF THE VECTOR-MATRIX
DIFFERENTIAL EQUATION

Let us now proceed to solve Eq. (36) by the eigenvalue
approach proposed by Ref. [66]. The characteristic equa-
tion of the matrix A takes the form

a31a42+ �a33a42−a32a43+a31a44��

+ �a33a44−a31−a42−a34a43��
2

− �a33+a44��
3+�4 = 0 (39)

The roots of the characteristic Eq. (39) which are also the
eigenvalues of matrix A are of the form � = �1, �= �2,
�= �3, �= �4.
The eigenvector �X = �x1� x2� x3� x4


T , corresponding to
eigenvalue � can be calculated as:

x1 = a32+a34�� x2 =−a31+ ��−a33��

x3 = �x1� x4 = �x2
(40)

From Eq. (39), we can easily calculate the eigenvector �Xj ,
corresponding to eigenvalue �j� j = 1�2�3�4.
For further reference, we shall use the following nota-

tions:
�X1 =

[ �X]
�=�1

� �X2 =
[ �X]

�=�2

�X3 =
[ �X]

�=�3

� �X4 =
[ �X]

�=�4

(41)

The solution of Eq. (36) can be written from as follows:

�V =
4∑

j=1

Bj
�Xje

�ix

= B1
�X1e

�1x +B2
�X2e

�2x +B3
�X3e

�3x +B4
�X4e

�4x (42)

where B1�B2�B3, and B4 are constants to be determined
from the boundary condition of the problem.
Thus, the field variables can be written for x and s as:

ū�x� s�=
4∑

j=1

Bjx
j
3e

�jx (43)

�̄�x� s�=
4∑

j=1

Bjx
j
4e

�jx (44)

T̄ �x� s�=
4∑

j=1

Bjx
j
4

(
1−a�2

j

)
e�jx (45)

�̄xx�x� s�=
4∑

j=1

��jx
j
3−�x

j
4�1−a�2

j ��Bje
��j+n�x (46)

To complete the solution we have to know the con-
stants B1, B2, B3, and B4, by using the boundary condi-
tions (32)–(35) we can obtain

⎛
⎜⎜⎜⎜⎜⎝

B1

B2

B3

B4

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

H11 H12 H13 H14

H21 H22 H23 H24

H31 H23 H33 H34

H41 H42 H43 H44

⎞
⎟⎟⎟⎟⎟⎠

−1
⎛
⎜⎜⎜⎜⎜⎜⎝

0

0
�1

s

0

⎞
⎟⎟⎟⎟⎟⎟⎠

(47)

where

H11 = �1x
1
3−x

j
4�

(
1−a�2

1

)
� H12 = �2x

2
3−x2

4�
(
1−a�2

2

)
H13 = �3x

3
3−x3

4�
(
1−a�2

3

)
� H14 = �4x

4
3−x4

4�
(
1−a�2

4

)
H21 =

(
�1x

1
3−x1

4�
(
1−a�2

1

))
e�1l

H22 =
(
�2x

2
3−x2

4�
(
1−a�2

2

))
e�2l

H23 =
(
�3x

3
3−x3

4�
(
1−a�2

3

))
e�3l

H24 =
(
�4x

4
3 −x4

4�
(
1−a�2

4

))
e�4l

H31 = x1
4� H32 = x2

4� H33 = x3
4� H34 = x4

4

H41 = x1
4e

�1l� H42 = x2
4e

�2l

H43 = x3
4e

�3l� H44 = x4
4e

�4l
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8. NUMERICAL INVERSION OF THE
LAPLACE TRANSFORMS

For the final solution of temperature, displacement and
stress distributions in the time domain, we adopt a numer-
ical inversion method based on the Stehfest.67 In this
method, the inverse f �t� of the Laplace transform f �s� is
approximated by the relation

f �t�= ln 2
t

N∑
j=1

VjF

(
ln 2
t

j

)
(48)

Where Vj is given by the following equation:

Vi = �−1��N/2+1�
min�i�N /2�∑
k=i+1/2

k�N/2+1� �2k�!(
N
2 −k

)!k! �i−k�! �2k−1�!
(49)

The parameter N is the number of terms used in the sum-
mation in Eq. (48) and should be optimized by trial and
error. Increasing N increases the accuracy of the result
up to a point, and then the accuracy declines because of
increasing round-off errors. An optimal choice of 10 ≤
N ≤ 14 has been reported by Lee et al. for some problem
of their interest.68 Thus, the solutions of all variables in
physical space-time domain are given by:

u �x� t�= ln 2
t

N∑
i=1

Viū

(
x�

ln 2
t

i

)
(50)

� �x� t�= ln 2
t

N∑
i=1

Vi�̄

(
x�

ln 2
t

i

)
(51)

T �x� t�= ln 2
t

N∑
i=1

ViT̄

(
x�

ln 2
t

i

)
(52)

and

�xx �x� t�=
ln 2
t

N∑
i=1

Vi�̄xx

(
x�

ln 2
t

i

)
(53)

9. NUMERICAL RESULTS AND DISCUSSION
The copper material was chosen for purposes of numerical
evaluations and the constants of the problem were taken
as following

�0 = 7�76×1010�kg��m�−1�s�−2


0 = 3�86×1010�kg��m�−1�s�−2

T0 = 293�K�� K0 = 3�68×102�kg��m��K�−1�s�−3

ce = 3�831×102�m�2�K�−1�s�−2� �1 = 1� l = 4

�0 = 8�954×103�kg��m�−3� �t = 17�8×10−6�K�−1

� = 0�05

Figures 1–5, present the conductive temperature distri-
bution, the thermo-dynamical temperature distribution, the
displacement distribution, the strain distribution and the

Fig. 1. The conductive temperature distribution with different values of
two-temperature parameter.

Fig. 2. The thermo-dynamical temperature distribution with different
values of two-temperature parameter.

Fig. 3. The displacement distribution with different values of two-
temperature parameter.

Fig. 4. The strain distribution with different values of two-temperature
parameter.

J. Comput. Theor. Nanosci. 12, 1–7, 2015 5
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Fig. 5. The stress distribution with different values of two-temperature
parameter.

Fig. 6. The conductive temperature distribution with different values n.

Fig. 7. The thermo-dynamical temperature distribution with different
values n.

Fig. 8. The displacement distribution with different values n.

Fig. 9. The strain distribution with different values n.

Fig. 10. The stress distribution with different values n.

stress distribution with different values of two-temperature
parameter respectively. According to those figures, the
two-temperature parameter has significant effects on all the
studied fields.
Figures 6–10, present the conductive temperature dis-

tribution, the thermo-dynamical temperature distribution,
the displacement distribution, the strain distribution and
the stress distribution with different values of n parameter
respectively. According to those figures, the n parameter
has significant effects on all the studied fields.

10. CONCLUSIONS
The conductive temperature distribution, the thermo-
dynamical temperature distribution, the displacement dis-
tribution, the strain distribution and the stress distribution
all are depend on not only the dimension x and t but
also on the two temperature parameter and the functional
graded parameter.

References
1. V. Birman and L. W. Byrd, Applied Mechanics Reviews 60, 195

(2007).
2. Y. Miyamoto, Functionally Graded Materials: Design, Processing,

and Applications, Chapman and Hall (1999).
3. T. Mori and K. Tanaka, Acta Metallurgica 21, 571 (1973).
4. Q. H. Qin and S. W. Yu, International Journal of Solids and Struc-

tures 35, 5085 (1998).
5. Q. H. Qin, The Trefftz Finite and Boundary Element Method,

Southampton, WIT Press (2000).

6 J. Comput. Theor. Nanosci. 12, 1–7, 2015



R
E
S
E
A
R
C
H

A
R
T
IC

L
E

Abbas and Youssef Two-Temperature Generalized Thermoelastic Interaction of Functional Graded Material

6. J. Jirousek and Q. H. Qin, Computers and Structures 58, 195
(1996).

7. W. Szymczyk, Mater. Sci. Eng., A 412, 61 (2005).
8. M. H. Santare and J. Lambros, Journal of Applied Mechanics 67, 819

(2000).
9. J. H. Kim and G. H. Paulino, Journal of Applied Mechanics 69, 502

(2002).
10. Q. H. Qin, International Journal of Solids and Structures 30, 3101

(1993).
11. C. Saizonou, R. Kouitat-Njiwa, and J. von Stebut, Surface and Coat-

ings Technology 153, 290 (2002).
12. A. Sutradhar and G. H. Paulino, Computer Methods in Applied

Mechanics and Engineering 193, 4511 (2004).
13. B. N. Rao and S. Rahman, Engineering Fracture Mechanics 70, 1

(2003).
14. K. Y. Dai, G. R. Liu, X. Han, and K. M. Lim, Computers and

Structures 83, 1487 (2005).
15. H. K. Ching and S. C. Yen, Composites Part B: Engineering 36, 223

(2005).
16. H. K. Ching and S. C. Yen, Composite Structures 73, 381 (2006).
17. J. Sladek, V. Sladek, and Ch. Zhang, Engineering Analysis with

Boundary Elements 29, 597 (2005).
18. D. F. Gilhooley, J. R. Xiao, R. C. Batra, M. A. McCarthy, and

J. Gillespie, Computational Materials Science 41, 467 (2008).
19. J. Sladek, V. Sladek, and Ch. Zhang, Engineering Analysis with

Boundary Elements 29, 334 (2005).
20. V. Sladek, J. Sladek, M. Tanaka, and Ch. Zhang, Engineering Anal-

ysis with Boundary Elements 29, 1047 (2005).
21. P. J. Chen and M. E. Gurtin, ZAMP 19, 614 (1968).
22. P. J. Chen, M. E. Gurtin, and W. O. Williams, ZAMP 19, 969 (1968).
23. P. J. Chen, M. E. Gurtin, and W. O. Williams, ZAMP 20, 107

(1969).
24. B. A. Boley and I. S. Tolins, J. App. Mech. 29, 637 (1962).
25. W. E. Warren and P. J. Chen, J. Acta Mechanica 16, 21 (1973).
26. H. M. Youssef, IMA J. App. Math. 71, 383 (2006).
27. H. M. Youssef and E. A. Al-Lehaibi, Int. J. Solid Structure 44, 1550

(2007).
28. H. M. Youssef and A. H. Al-Harby, J. Archive Appl. Mech. 77, 675

(2007).
29. E. Bassiouny and H. M. Youssef, J. Thermal Stresses 31, 233 (2008).
30. H. M. Youssef, J. Comp. Math. Model 19 (2008).
31. A. N. Abd-Alla and I. A. Abbas, Applied Mathematics and Compu-

tation 127, 347 (2002).
32. A. N. Abd-Alla and I. A. Abbas, J. Thermal Stresses 25, 1009

(2002).
33. I. A. Abbas, Applied Mathematics Letters 26, 232 (2013).
34. I. A. Abbas, A. N. Abd-Alla, and M. I. A. Othman, International

Journal of Thermophysics 32, 1071 (2011).
35. I. A. Abbas and H. M. Youssef, Meccanica 48, 331 (2013).
36. I. A. Abbas and A. M. Zenkour, J. Comput. Theor. Nanosci. 11, 642

(2014).

37. I. A. Abbas and R. Kunnar, J. Comput. Theor. Nanosci. 11, 185
(2014).

38. I. A. Abbas, J. Comput. Theor. Nanosci. 11, 380 (2014).
39. I. A. Abbas, J. Comput. Theor. Nanosci. 11, 987 (2014).
40. I. A. Abbas and A. M. Zenkour, J. Comput. Theor. Nanosci. 11, 1592

(2014).
41. I. A. Abbas and A. M. Zenkour, J. Comput. Theor. Nanosci. 11, 331

(2014).
42. I. A. Abbas and R. Kunnar, J. Comput. Theor. Nanosci. 11, 1472

(2014).
43. I. A. Abbas, Arch. Appl. Mech. 79, 41 (2009).
44. I. A. Abbas and A. N. Abd-Alla, Arch. Appl. Mech. 78, 283 (2008).
45. I. A. Abbas and M. I. Othman, Meccanica 46, 413 (2011).
46. I. A. Abbas and M. I. Othman, Chin. Phys. B 21, 014601 (2012).
47. I. A. Abbas, International Journal of Thermophysics 33, 567 (2012).
48. I. A. Abbas and M. I. Othman, International Journal of Thermo-

physics 33, 913 (2012).
49. R. Kumar, V. Gupta, and I. A. Abbas, J. Comput. Theor. Nanosci.

10, 2520 (2013).
50. I. A. Abbas and A. Zenkour, J. Comput. Theor. Nanosci. 11, 1 (2014).
51. I. A. Abbas and A. M. Zenkour, Composite Structures 96, 89 (2013).
52. I. A. Abbas, Archive of Applied Mechanics 79, 41 (2009).
53. I. A. Abbas and H. Youssef, Meccanica 48, 331 (2013).
54. I. A. Abbas and H. Youssef, Archive of Applied Mechanics 79, 917

(2009).
55. I. A. Abbas, Meccanica 49, 1697 (2014).
56. A. Zenkour and I. A. Abbas, International Journal of Mechanical

Sciences 84, 54 (2014).
57. I. A. Abbas and R. Kumar, Journal Vibration and Control 20, 1663

(2014).
58. R. Kumar, I. A. Abbas, and V. Sharma, International Journal of

Heat and Fluid Flow 44, 258 (2013).
59. A. Zenkour and I. A. Abbas, International Journal of Structural

Stability and Dynamics 14, 1450025 (2014).
60. P. K. Bose, N. Paitya, S. Bhattacharya, D. De, S. Saha, K. M.

Chatterjee, S. Pahari, and K. P. Ghatak, Quantum Matter 1, 89
(2012).

61. T. Ono, Y. Fujimoto, and S. Tsukamoto, Quantum Matter 1, 4
(2012).

62. V. Sajfert, P. Mali, N. Bednar, N. Pop, D. Popov, and B. Tošic,
Quantum Matter 1, 134 (2012).

63. A. Herman, Rev. Theor. Sci. 1, 3 (2013).
64. E. L. Pankratov and E. A. Bulaeva, Rev. Theor. Sci. 1, 58 (2013).
65. Q. Zhao, Rev. Theor. Sci. 1, 83 (2013).
66. A. Lahiri, B. Das, and B.Datta, International Journal of Applied

Mechanics and Engineering 15, 99 (2010).
67. H. Stehfest, Commun. ACM 13, 47 (1979).
68. S. T. Lee, M. C. H. Chien, and W. E. Culham, Vertical single-well

pulse testing of a three-layer stratified reservoir, SPE Annual Tech-
nical Conference and Exhibition, SPE, Houston, Texas, September
(1984), p. 13249.

Received: 11 July 2014. Accepted: 28 July 2014.

J. Comput. Theor. Nanosci. 12, 1–7, 2015 7


